skip to main content


Search for: All records

Creators/Authors contains: "Thomas, Patrick K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Riverine exports of silicon (Si) influence global carbon cycling through the growth of marine diatoms, which account for ∼25% of global primary production. Climate change will likely alter river Si exports in biome‐specific ways due to interacting shifts in chemical weathering rates, hydrologic connectivity, and metabolic processes in aquatic and terrestrial systems. Nonetheless, factors driving long‐term changes in Si exports remain unexplored at local, regional, and global scales. We evaluated how concentrations and yields of dissolved Si (DSi) changed over the last several decades of rapid climate warming using long‐term data sets from 60 rivers and streams spanning the globe (e.g., Antarctic, tropical, temperate, boreal, alpine, Arctic systems). We show that widespread changes in river DSi concentration and yield have occurred, with the most substantial shifts occurring in alpine and polar regions. The magnitude and direction of trends varied within and among biomes, were most strongly associated with differences in land cover, and were often independent of changes in river discharge. These findings indicate that there are likely diverse mechanisms driving change in river Si biogeochemistry that span the land‐water interface, which may include glacial melt, changes in terrestrial vegetation, and river productivity. Finally, trends were often stronger in months outside of the growing season, particularly in temperate and boreal systems, demonstrating a potentially important role of shifting seasonality for the flux of Si from rivers. Our results have implications for the timing and magnitude of silica processing in rivers and its delivery to global oceans.

     
    more » « less
  2. Abstract

    The relevance of considering environmental variability for understanding and predicting biological responses to environmental changes has resulted in a recent surge in variability‐focused ecological research. However, integration of findings that emerge across studies and identification of remaining knowledge gaps in aquatic ecosystems remain critical. Here, we address these aspects by: (1) summarizing relevant terms of variability research including the components (characteristics) of variability and key interactions when considering multiple environmental factors; (2) identifying conceptual frameworks for understanding the consequences of environmental variability in single and multifactorial scenarios; (3) highlighting challenges for bridging theoretical and experimental studies involving transitioning from simple to more complex scenarios; (4) proposing improved approaches to overcome current mismatches between theoretical predictions and experimental observations; and (5) providing a guide for designing integrated experiments across multiple scales, degrees of control, and complexity in light of their specific strengths and limitations.

     
    more » « less